Viable Inhomogeneous Model Universe without Dark Energy from Primordial Inflation
نویسنده
چکیده
A new model of the observed universe, using solutions to the full Einstein equations, is developed from the hypothesis that our observable universe is an underdense bubble, with an internally inhomogeneous fractal bubble distribution of bound matter systems, in a spatially flat bulk universe. It is argued on the basis of primordial inflation and resulting structure formation, that the clocks of the isotropic observers in average galaxies coincide with clocks defined by the true surfaces of matter homogeneity of the bulk universe, rather than the comoving clocks at average spatial positions in the underdense bubble geometry, which are in voids. This understanding requires a systematic reanalysis of all observed quantities in cosmology. I begin such a reanalysis by giving a model of the average geometry of the universe, which depends on two measured parameters: the present matter density parameter, Ωm, and the Hubble constant, H0. The observable universe is not accelerating. Nonetheless, inferred luminosity distances are larger than näıvely expected, in accord with the evidence of distant type Ia supernovae. The predicted age of the universe is 15.3 ± 0.7 Gyr. The expansion age is larger than in competing models, and may account for observed structure formation at large redshifts. Subject headings: Cosmology: theory – Cosmology: large-scale structure of universe — Cosmological parameters — Cosmology: early universe [ arXiv: gr-qc/0503099 ]
منابع مشابه
Dark energy from primordial inflationary quantum fluctuations.
We show that current cosmic acceleration can be explained by an almost massless scalar field experiencing quantum fluctuations during primordial inflation. Provided its mass does not exceed the Hubble parameter today, this field has been frozen during the cosmological ages to start dominating the Universe only recently. By using supernovae data, completed with baryonic acoustic oscillations fro...
متن کاملar X iv : a st ro - p h / 05 04 00 4 v 1 3 1 M ar 2 00 5 Large Scale Cosmological Inhomogeneities , Inflation And Acceleration Without Dark Energy
We describe the universe as a local, inhomogeneous spherical bubble embedded in a flat matter dominated FLRW universe. Generalized exact Friedmann equations describe the expansion of the universe and an early universe inflationary de Sitter solution is obtained. A non-perturbative expression for the deceleration parameter q is derived that can possibly describe the acceleration of the universe ...
متن کاملar X iv : a st ro - p h / 05 10 20 7 v 1 7 O ct 2 00 5 Dark energy in hybrid inflation Jinn - Ouk
The situation that a scalar field provides the source of the accelerated expansion of the universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid ...
متن کاملar X iv : a st ro - p h / 06 06 12 4 v 1 6 J un 2 00 6 Inhomogeneous Cosmology , Inflation and Late - Time Accelerating Universe
An inhomogeneous cosmology describing a spacetime without symmetry is shown to be able to inflate the early universe and explain the late-time acceleration of the universe without a cosmological constant and negative pressure dark energy and avoid the coincidence problem. e-mail: [email protected]
متن کاملDark energy in hybrid inflation
The situation that a scalar field provides the source of the accelerated expansion of the universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008